3 and 4 .Determinants and Matrices
hard

Let the system of linear equations  $x+y+k z=2$ ;  $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ , have infinitely many solutions. Then the system $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10 \text { has : }$

A

infinitely many solutions

B

unique solution satisfying $x-y=1$

C

no solution

D

unique solution satisfying $x+y=1$

(JEE MAIN-2023)

Solution

$\left|\begin{array}{ccc}1 & 1 & k \\ 2 & 3 & -1 \\ 3 & 4 & 2\end{array}\right|=0$

$1(10)-1(7)+k(-1)-0$

$k=3$

For $k =3,2^{\text {nd }}$ system is

$4 x+5 y=7…….(1)$

and $7 x+8 y=10……..(2)$

Clearly, they have a unique solution

$(2) -(1) \Rightarrow 3 x+3 y=3$

$\Rightarrow x+y=1$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.