Let the system of linear equations $x+y+k z=2$ ; $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ , have infinitely many solutions. Then the system $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10 \text { has : }$
infinitely many solutions
unique solution satisfying $x-y=1$
no solution
unique solution satisfying $x+y=1$
If $A=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right],$ find $|A|$.
If $-9 $ is a root of the equation $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$ then the other two roots are
If $A = \left[ {\begin{array}{*{20}{c}}
1&1\\
1&1
\end{array}} \right]$ and $\det ({A^n} - I) = 1 - {\lambda ^n}\,,\,n \in N$ then $\lambda $ is
$\left| {\begin{array}{*{20}{c}}
{4 + {x^2}}&{ - 6}&{ - 2}\\
{ - 6}&{9 + {x^2}}&3\\
{ - 2}&3&{1 + {x^2}}
\end{array}} \right|$ $;(x\neq0)$ is not divisible by
For $\alpha, \beta \in \mathrm{R}$ and a natural number $\mathrm{n}$, let
$A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$. Then $2 A_{10}-A_8$